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Abstract—Fog computing is a paradigm which brings computing, stor-
age, and networking closer to end users and end devices for better
service provisioning. One of the crucial factors in the success of fog
computing is on how to incentivize the individual users’ edge resources
and provide them to end users such that fog computing is economically
beneficial to all involved economic players. In this paper, we model
and analyze a market of fog computing, from which we aim at drawing
practical implications to uncover how the fog computing market should
operate. To this end, we conduct an economic analysis of such user-
oriented fog computing by modeling a market consisting of ISP (Infras-
tructure and Service Provider), SUs (end Service Users), and EROs
(Edge Resource Owners) as a non-cooperative game. In this market,
ISP, which provides a platform for fog computing, behaves as a mediator
or a broker which leases EROs’ edge resources and provides various
services to SUs. In our model, a two-stage dynamic game is used where
in each stage, there exists a dynamic game, one for between ISP and
EROs and another for between ISP and SUs, to model the market
more practically. Despite this complex game structure, we provide a
closed-form equilibrium analysis which gives an insight on how much
economic benefit is obtained by ISP, SUs, and EROs from user-oriented
fog computing under what conditions, and we figure out the economic
factors that have a significant impact on the success of fog computing.

Index Terms—Edge network, Fog computing, Game theory, Network
Economics.

1 INTRODUCTION

Gartner predicts that about 21 billion “things” across different
industries will be connected to the network by 2020 [2]. We
are also witnessing a growing number of things at the edge
providing and sharing compute, storage, sensing, and network
resources. We expect this to become more individually-owned
and managed in the future. Example applications include mobile
cloud computing [3], [4], and content (e.g., sensing and video
streaming) provisioning [5], [6]. This trend is often referred to as
fog computing and networking (simply fog computing throughout
this paper) and it has begun to attract much attention in the
industry and the academe. This paradigm shift can be understood
as following the philosophy of sharing economy in the area of
computing and networking, which has already experienced a huge
success in other business sectors, e.g., Uber, Lyft, Airbnb.
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Fig. 1. Ecosystem overview of user-oriented fog computing system
consisting of SP, InP, ERO, and SU. SP and InP behave as one business
unit, which we call ISP (Infrastructure and Service Provider).

The market of fog computing can be explained by the eco-
nomic interplay of the following four major players: (i) end
Service Users (SU), (ii) Service Provider (SP), (iii) Infrastructure
Provider (InP), and (iv) Edge Resource Owners (ERO), as briefly
sketched in Fig. 1. SUs are the end users who are ready to enjoy
edge-based applications, e.g., IoT applications. EROs are mostly
individuals or companies with a small-scale communication and
sensor infrastructures, who own edge resources. Especially, in-
dividual edge resource owners, like an Uber driver in the car
sharing business, partially or even entirely share and sell their
resources to an InP if sufficient incentive is provided. SPs create
diverse edge-based applications that attract SUs as OTT (Over-
The-Top) providers. SPs do not necessarily own the resources of
fog clouds or edge devices but may rent them. Thus, SPs often
make a contract with InPs that manage the edge resources. InPs
own and manage the large-scale infrastructure of communications,
sensors, and clouds but may also rely on individual EROs by
running a fog network orchestration platform, e.g., [7], to expand
their infrastructures. We particularly consider the case where SPs
and InPs behave as one business unit, called ISP (Infrastructure
and Service Provider), which is highly likely to be run by current
mobile network operators (MNOs). The MNOs such as AT&T in
US, and KT, SKT, LGU+ in Korea have actually started to run
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such joint SP/InP business with a focus on IoT applications, e.g.,
[8].

As an example, we consider an augmented reality (AR) service
that utilizes the fog computing platform. In this service, two types
resources are needed; (i) computation resource to process video
streaming, and (ii) network bandwidth resource for data transmis-
sion. AR applications run on edge devices (e.g., smartphone, smart
eyeglasses) only with limited computation power and network
bandwidth, yet requiring to process real-time video frames using
a complex computer vision algorithm. Thus, ISP first secures both
resources (a) from their own infrastructures such as central clouds
or high-speed LTE networks or (b) by leasing edge resources
from EROs, and then operates the AR service by assigning an
appropriate amount of resources to service users. By smartly using
the resources secured by either of the above ways, ISP is able to
provide the AR service with high QoE (Quality of Experience)
to service users. Surveillance service, real-time video analytics,
and mobile big data analytics services are other examples of fog
computing services [9].

In this paper, we aim to quantify how these players interact
with each other and how much economic benefits do they obtain
from fog computing. To this end, we model a market of fog
computing where we consider a single ISP, many SUs and many
EROs. by formulating an ISP-platformed two-stage “embedded”
dynamic sequential game. By embedded, we mean that a sequen-
tial game is embedded at each stage. In our game formulation,
we appropriately model heterogeneity of SUs and EROs in terms
of willingness to pay and the QoS of shared edge resources to
reflect practical factors as much as possible. To briefly explain
how each stage sequential game is structured, at the first stage, ISP
and EROs play a dynamic sequential game, which determines how
actively EROs participate in the expansion of the fog infrastructure
by being paid a certain amount of incentive. At the second stage,
ISP and SUs also play a dynamic sequential game, which finally
determines the ISP’s revenue and SUs’ utilities. Since ISP is the
leader of the dynamic games in both stages, we call our game a
ISP-platformed dynamic game.

Under the aforementioned market model, we conduct analyt-
ical studies to quantify which factors have how much impact on
the fog ecosystem under what conditions. Despite a significantly
complex game structure mainly due to their embeddings, we
successfully provide a closed-form of the prices, incentives, and
the resulting economic benefits (e.g., revenues and utilities) at
equilibrium. To obtain more practical messages and quantify the
economic gain of fog computing, our numerical results use the
cost of ISP and EROs following the present price plans for cellular
network and fog computing. Under this setting of costs, we draw
the following useful messages: (a) ISP can increase the revenue by
up to 33% by adopting the fog computing service, compared to the
case where ISP runs business without collaborating with EROs, (b)
the per-SU utility also increases up to 30% and that of ERO also
increases. (c) Moreover, the usage of the large-scale infrastructure
owned by ISP is significantly reduced due to the offloading on
the EROs’ resources. (d) We also show that under any condition,
fog computing generates positive benefit to all players and this
benefit grows as the QoS offered by edge resource increases. See
Section 4 for more implications from our analysis.

1.1 Related Work and Organization
Fog computing, which brings computing, storage, and networking
closer to end users for better QoS, is being actively discussed

in three major groups, i.e., Cloudlet [10], MEC [11] and Open
Fog Consortium [12]. In the literature, there are some researches
which propose the design and implementation of fog computing,
e.g., [7], [13]–[17]. The authors in [7] design a distributed op-
erating system for fog computing system, which plays a role as
a platform to manage the services and resources at the network
edge, and [13] focuses on the coordinated management of fog
and cloud computing systems. The work in [14] considers the
framework for secure data storage and retrieval in fog computing,
and [15] supports the heterogeneity of fog nodes. [17] proposes
and implements edge computing platform and deploys a service
on the platform. [16]–[18] are stressing to allow third-parties to
create new types of services by exploiting individual resources at
edge, which is the role of the service provider. The authors in [19]
point out that due to the limited resources of InPs, it is crucial to
provide a mechanism to incentivize the EROs for extending InP’s
resources. One of the example ecosystems among EROs, SUs, and
ISPs is discussed in [7], as modeled in this paper. Related to this
goal, there are an array of prior works in the area of User Centric
Network (UCN).

In UCN area, two categories of research are studied: au-
tonomous and network-assisted UCN. In autonomous UCNs such
as OpenGarden [20], no platform provider is involved and EROs
autonomously form a network and share their resources with
other EROs or users based on a pre-defined incentive mechanism.
Thus, only the interaction between EROs and SUs is required, as
studied in [21]–[23]. The authors in [21], [23] study an incentive
mechanism and a pricing rule made by the NBS (Nash Bargaining
Solution)-based resource sharing rule. The work in [22] studies
incentive mechanism with coalitional game theory. However, since
autonomous UCNs are their main interest, they focus on the
interaction only between users without considering ISP.

From the perspective of modeling and analysis, our work
is relevant with what has been studied in the area of network-
assisted UCNs [24]–[30], where incentivization is usually led by
ISPs. Karma [31] and FON [32] are the commercialized services
of this form. In [24], [26], a two-stage Stackelberg game is
modeled between an ISP and EROs where the ISP is the leader
and the EROs are the followers. In [24], the authors focus on
the interaction between the ISP and the hosts which operate as
mobile WiFi hotspots to provide Internet connectivity service,
where SUs are modeled in a highly abstract manner. The authors
in [28] analyze the behavior of SUs and the ISP which operates
a crowdsourced wireless community network. In [26], [27], an
optimal incentive is studied, where there are two competitive or
cooperative ISPs in the market. In [26], they model the utility of
users, which is identical for both EROs and SUs, with focus only
on maximizing users’ total utilities rather than taking into account
individual ones. There exist related works in other domains which
have similar structure to what has been modeled in this paper
for fog computing market. In crowdsourcing, in [33], [34], the
authors design auction-based incentive mechanism, and in [35],
[36] an incentive mechanism is designed and analyzied based on
game theory. The authors in [37] study the smart grid by modeling
the market as a Stackelberg game.

Difference from prior work. The key difference of this paper
from prior work lies in explicitly considering the interaction of
all three players in one market with the context of user-oriented
fog computing. An ISP is placed as a mediator between EROs
and SUs by treating them as the same level of economic players,
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Fig. 2. Two types of services in Fog Computing System.

thereby two sequential games (one between ISP and EROs and
another between ISP and SUs) are necessary to be embedded
in a larger dynamic game. The work in [30] is close to ours in
terms of considering all three players, but it focuses more on the
stable revenue sharing based on Shapley Value in a strategical
cooperation among cellular resource owners (ISP and EROs)
where the cooperation’s revenue is determined by the interaction
with clients. However, this paper considers an ISP-platformed
competitive interactions among three players (ISP, EROs, and
SUs) for modeling major features of ISP in fog computing, which
are (i) the competition with SUs to decide the price and (ii) the
competition with EROs to determine the incentive. To the best of
our knowledge, this paper is the first that studies the interactions of
all three players in fog computing market which explicitly models
the impact of ERO’s participation on the quality of services to SUs,
which is a major feature inherent to user-oriented fog computing
market.
Organization. The rest of this paper is organized as follows: In
Section 2, we first describe the system model of fog computing,
followed by the game formulation among ISP, SPs, and EROs.
In Section 3, we present the analysis on fog computing market
which shows the equilibrium behavior of the players via a rigorous
mathematical analysis and provide the numerical evaluation results
in Section 4. Finally, we conclude in Section 5. Appendix includes
the detail of the mathematical proofs.

2 MODEL AND GAME FORMULATION

2.1 System Model
ISP, SUs, and EROs. We consider a single ISP, which plays the
role of both InP and SP as mentioned earlier. ISP leases the edge
resources from EROs and provides a service to SUs. We assume
that there are N number of SUs, and bN number of EROs, where
b > 0. SUs pay the service fee to ISP, when they subscribe to
the service from the ISP, and EROs decide to share their edge
resource, contributing to an expansion of ISP’s infrastructure, if
incentives are appropriately provided.
Services. The ISP provides the fog computing service with two
types: (i) core service and (ii) edge service. As shown in
Fig. 2, the core service corresponds to the case where SUs are
allowed to use a cellular mobile Internet service (e.g., LTE) and
computing/storage resources in some central cloud, whereas the
edge service refers to the one that SUs use only nearby edge com-
puting/sensing/connectivity/storage resources through the network
formed by edge devices. Thus, SUs can choose between core and
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Fig. 3. Graph comparing the edge’s and core’s qualities for
varying number of sharing-EROs and for different values of
β = 0.7, 1.0, 1.3.

edge or none of them. The ISP sets the service prices and if SUs
subscribe the service, they pay the service fee to ISP. We denote by
pc and pe the prices of core and edge services, respectively. To
provide the edge service, the ISP needs to lease the edge resources
from EROs by paying them some incentive q, depending on which
each ERO decides to share its resources.
Quality of core and edge services. We let αc denote the quality
of core service. For mathematical tractability, we assume that it
is homogeneous across applications. Thus, when SUs subscribe to
core service, the utility of SUs purely depends on αc. We let αe
be the quality of edge service and model it as:

αe = f(m) (1)

where m is the number of EROs which share the resource, and f :
R → R is a twice differentiable, strictly increasing, and concave
function, i.e., f ′(m) > 0 and f ′′(m) < 0 for all m. The quality
of edge service depends on how many resources ISP has. We
assume that once EROs decide to share their resources, they share
the same amount of resource (i.e., unit resource). Thus, the quality
of edge service depends only on m, the number of EROs which
share the resource. It is clear that as the number of EROs sharing
their resources increases, the quality of edge grows and we model
αe to be strictly concave in m to reflect the effect of diminishing
returns.

We present an example form of f which is simple but param-
terizes the features of fog computing environment, as follows:

αe(m) = βαc

(
1−

(
a · m

N
+ 1
)−1)

. (2)

In this model, as the portion of EROs sharing their resources
relative to the total number of SUs, mN , increases, the quality of
edge grows, whose aggressiveness is modeled by a constant a.
The maximum quality of edge service is βαc when the number of
EROs sharing their resources is very large, i.e., m→∞, where β
quantifies the fundamental difference in QoSes between core and
edge services. Fig. 3 illustrates the shape of QoS of edge services
for varying number of sharing-EROs m for different values of β.
Note that the value of m is not fixed a priori, but determined by
the game among all the players where our interest is in the one at
the equilibrium. We will provide the analysis based on (2) as well,
which gives us more analytically interpretable result.

2.2 Market Model: Game Formulation
We aim at understanding how ISP, SUs and EROs interplay for
providing and consuming edge services in fog computing market,
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Fig. 4. Game formulation: ISP-platformed two-stage dynamic
game.

and analyzing their strategic behaviors to maximize their selfish
objective. To this end, we model a fog computing market by a
type of non-cooperative game, called ISP-platformed two-stage
embedded dynamic game. To help the readers, we briefly provide
an overview of the game structure using Fig. 4 and formally
describe it after presenting the pay-off functions of ISP, ERO,
and SU.

As summarized in Fig. 4, two stages are embedded in our
game. At Stage I, ISP initially leads a sequential game to collect
the resources from EROs. ISP sets the incentive and EROs deter-
mine whether they share their resource or not depending on the
incentive. Subsequently, ISP leads another game to operate two
types of services to SUs at Stage II, where ISP sets the service
prices and SUs select the service subscription according to the
prices. At the equilibrium of our game, ISP determines its pricing
strategies pe, pc, q to maximize its revenue π (see (3)), while
EROs (or SUs) individually decide their own strategy y ∈ SERO
(or x ∈ SSU) to maximize individual utility uERO (or uSU) where
SERO (or SSU) denotes the strategy set of EROs (or SUs).

We now present the pay-off functions and the strategies of
three players in what follows:

Utility of ERO. An ERO’s utility is determined by various factors
such as the resource sharing cost, incentive to share, and its
willingness to share. To model this, we consider the following
utility function:

uERO(q, y; θ) =

{
q − θq0, if y =‘s’,
0 if y =‘n’,

where q0 denotes ERO’s cost for resource sharing and θ represents
the willingness to share of an ERO. Each ERO selects its strategy
y ∈ SERO among ‘s’ and ‘n’ which correspond to sharing and
non-sharing, respectively. To model ERO’s heterogeneity, they are
assumed to have different willingness to pay θ, where as popularly
modeled in e.g., [38], θ is a uniformly random value over the
interval [0, 1]

For example, for a given cost q0, an ERO with a smaller θ has
less sensitivity to cost for sharing (or more willingness to share)
its resource than the one with a larger θ.

Utility of SU. An SU’s utility would be affected by various factors,
of which we focus on the following primary factors: service fees
(pe, pc) and QoSes (αe, αc) of core and edge services. To model

this, we consider the following utility function:

uSU(pe, pc, x; γ) =


γαe − pe, if x =‘e’,
γαc − pc, if x =‘c’,
0, if x =‘n’,

where x ∈ SSU is the strategy of SU, representing which service
the SU subscribes to among ‘c’, ‘e’ and ‘n’, each of which
corresponds to core, edge or no-subscription, respectively. The
value of γ is the willingness to pay, again assumed to be uniformly
random over [0, 1]. For a given QoS, a SU with higher γ has more
willingness to pay than the one with smaller γ.

Revenue of ISP. The revenue of ISP consists of an income from
providing the services of core and edge and an expenditure
on operating and managing core resources and leasing edge
resources. Then, the net-revenue of ISP is given by:

π(·) = pcnc + pene − p0nc −mq, (3)

where we denote by p0 the constant cost for providing core
service, and nc and ne the number of SUs who subscribe to
the core and edge services, respectively. In (3), the first and
second terms are the income from providing core and edge
services, respectively. The third term is the cost for providing core
service and the last term is the cost for paying EROs incentive
to provide edge service. When we express (3) in more explicit
relation to SUs’ and EROs’ strategies and willingness-to-pay and
willingness-to-share, we get:

π(·) = N

∫ 1

0

{
(pc − p0) · 1{max(0,ue(γ))≤uc(γ)}

+ pe · 1{max(0,uc(γ))≤ue(γ)}

}
dγ

− bN
∫ 1

0
q · 1{θ<θ0}dθ, (4)

where θ0 = q/q0. Recall that uc(γ) and ue(γ) are the utilities
of SU with willingness-to-pay γ, when it subscribes to core and
edge services, respectively. ISP gains by core from the SUs with
γ which satisfies max(0, ue(γ)) ≤ uc(γ) as well as does by
edge from SUs with γ which satisfies max(0, uc(γ)) ≤ ue(γ).
Similarly, ISP spends on leasing edge resources from the EROs
who is willing to share with θ < θ0, where θ0 is the threshold
of willingness-to-share below which an ERO does not share its
resource, i.e., q − θ0q0 = 0.

We now describe the ISP-platformed two-stage dynamic game.

ISP-platformed Two-stage Dynamic Game

Stage I: Incentivizing EROs and resource sharing of ERO.
ISP first sets the incentive q as a leader, then each ERO with
willingness-to-share θ selects its service among SERO , {s, n},
where ‘s’ and ‘n’ correspond to sharing and non-sharing, respec-
tively.

Stage I-A. ISP (Leader): q? = arg max
q∈[0,1]

π(q, y, pc, pe, x),

Stage I-B. ERO (Follower): y?(θ) = arg max
y∈SERO

uERO(q, y; θ).

Stage II: Pricing for SUs and service subscription of SUs.
ISP first decides the service prices pc and pe, then each SU with
willingness-to-pay γ chooses which service to subscribe to out of
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SSU , {c, e, n}, where we use the ‘c’, ‘e’ and ‘n’ to refer to an
SU’s selection of core, edge or no-subscription.

Stage II-A. ISP (Leader): (p?c , p
?
e) = arg max

(pc,pe)
π(q, y, pc, pe, x),

Stage II-B. SU (Follower): x?(γ) = arg max
x∈SSU

uSU(pc, pe, x; γ).

3 FOG-COMPUTING MARKET ANALYSIS:
SERVICE OPERATION AND RESOURCE AGGREGA-
TION

In this section, we provide the equilibrium analysis for the ISP-
platformed two-stage dynamic game described in the previous
section. We adopt the classical backward induction to find the
subgame perfect equilibrium of our sequential game. Our sequen-
tial analysis in turn gives us the answers on how ISP operates core
and edge services and how SUs select the services in Stage II, as
well as how ISP collects the edge resources from EROs in Stage
I.

To find the equilibrium using the backward induction, we start
the equilibrium analysis of the competitive market between ISP
and SUs in Stage II. We investigate the service selection of SUs
and the pricing of ISP in Section 3.1.1 and 3.1.2, respectively.
Using the result in Stage II, we present the analysis of market
between ISP and EROs in Stage I. Section 3.2.1 provides the
behavior of EROs to share their resource, and Section 3.2.2
provides ISP’s selection of incentive to lease resource from EROs.
In Section 3.3, we present the strategies of all players at the
equilibrium and their resulting economic benefits.

3.1 Interaction between ISP and SUs in Stage II: Pricing
and Selection of Service Subscription
We focus on the game between ISP and SUs in Stage II, where ISP
operates core and edge services by setting the service fees, pc and
pe, and each SU determines the service for subscription. Assuming
that the ISP successfully leases edge resources by giving incentive
q to EROs in Stage I, then the QoS of edge service is determined,
so that SUs make decisions based on the given price and QoSes.
Stage II consists of two substages where the Stage II-A is the
decision on ISP’s prices pc and pe, and the Stage II-B is the
decision on the services that SUs subscribe to. We first present the
analysis of Stage II-B, followed by that of Stage II-A.

3.1.1 (Stage II-B) SU’s Selection of Strategy
In this substage, heterogeneous SUs try to maximize their own
utilities by selecting a service out of core, edge, and none,
depending on the service fees, QoSes, and willingness to pay.
Proposition 3.1 states which service an SU selects when the
service fees (pc, pe) and QoSes (αc, αe) are given by ISP.

Proposition 3.1. For given values of QoSes (αc, αe) and prices
(pc, pe), the utility-maximizing strategy of an SU with willingness
to pay γ is given as:

(i) αc ≥ αe

x?(γ) =


c, if γ > max

(
pc − pe
αc − αe

,
pc
αc

)
,

e, if
pe
αe

< γ ≤ pc − pe
αc − αe

,

n, otherwise.

(ii) αc < αe

x?(γ) =


c, if

pc
αc

< γ ≤ pe − pc
αe − αc

,

e, if γ > max

(
pe − pc
αe − αc

,
pe
αe

)
,

n, otherwise.

It is intuitive that the SU with higher willingness prefers the
service with higher QoS. As shown in Fig. 5(a), when core’s
QoS is better than edge’s one (i.e., αc ≥ αe), SUs who have
relatively higher willingness to pay (i.e., γ ≥ max

( pc−pe
αc−αe ,

pc
αc

)
)

subscribe to core service which returns higher utility, even if it
is more expensive than edge (i.e., pc ≥ pe). However, Fig. 5(b)
shows that if pc is too expensive (i.e., pc > pe + αc − αe),
all SUs have higher utility when they subscribe to edge service.
Similarly, when edge’s QoS is better than core’s one, the SU’s
behavior shows an opposite tendency as shown in Figs. 5(c) and
5(d).

3.1.2 (Stage II-A) ISP’s Selection of Service Prices
In Stage II-A, the ISP decides the service prices pc and pe.
In Proposition 3.1, SU’s service subscription strategy depends
on which range where the willingness to pay is included. The
range of either core or edge or both services can be infeasible,
depending on the conditions of service prices (pc, pe). Thus,
for given QoSes (αc, αe), it is necessary to separately consider
the service prices (pc, pe) in the following four disjoint regions,
according to whether each service is feasible or not.

A1 =
{

(pc, pe)|pc < min
(
αc
αe
, 1
)
pe + (αc − αe)+,

pc ≥ max
(
αc
αe
, 1
)
pe − (αe − αc)+

}
A2 =

{
(pc, pe)|pc ≥ min

(
αc
αe
, 1
)
pe + (αc − αe)+, pe ≤ αe

}
A3 =

{
(pc, pe)|pc < max

(
αc
αe
, 1
)
pe − (αe − αc)+, pc ≤ αc

}
A4 =

{
(pc, pe)|pc > αc, pe > αe

}
, (5)

where pc ≥ 0, pe ≥ 0 and the partitions are presented in Fig. 6.
In A1, SUs subscribe to both core and edge services. In A2

(resp. A3), SUs subscribe to only edge (resp. core) service and in
A4, no SU subscribes to any service, because the utility becomes
negative.

The revenue function of ISP in (3) has a different shape, which
depends on which region (pc, pe) resides, because SUs select
different strategy depending on the service prices, as described
in Proposition 3.1. Let πi denote the revenue function of ISP for
(pc, pe) ∈ Ai, i = 1, 2, 3, 4. Then, the revenue function of ISP is
given as follows:

π1(pc, pe) =N(pc − p0)(1− z) +Npe
(
z − pe

αe

)
−B, if αc > αe,

N(pc − p0)
(
z − pc

αc

)
+Npe(1− z)−B, if αc ≤ αe,

π2(pc, pe) = Npe
(

1− pe

αe

)
−B,

π3(pc, pe) = N(pc − p0)
(

1− pc

αc

)
−B,

π4(pc, pe) = 0.
(6)

where B = bN
∫ 1
0 q ·1{θ<θ0}dθ is ISP’s cost for leasing resource

from EROs, and z = pc−pe
αc−αe . Now, following the “optimal”
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Fig. 6. Partitions of service prices depending on SUs’ behavior.

decisions by SUs at Stage II-B, the ISP chooses the prices of
edge and core services to maximize its revenue, as stated in
Proposition 3.2.

Proposition 3.2. For given QoSes (αc, αe), ISP sets the prices p?c
and p?e as follows:

p?c =
p0 + αc

2
, p?e =

αe
2
. (7)

The ISP is the leader in Stage II and thus it knows how SUs act
in backward induction. When the QoS of edge service is given,
ISP determines the price to maximize its revenue by predicting
SUs’ optimal action. Since the QoS of core service is independent
of the amount of leased edge resource, the price of core service
pc, is not a function of the quality of edge service. Thus, by
only controlling the price of edge service pe, ISP maximizes its
revenue. As the QoS of edge service grows, the selected price for
edge service increases. It is natural that the better QoS of edge
service and the more SUs intend to subscribe to edge service, so
that increasing the price can help in increasing the revenue. We
obtain the following corollary, which is based on Proposition 3.2,
that characterizes the conditions of ISP’s prices selection.

Corollary 3.1. For given QoSes (αc, αe), the prices (p?c , p
?
e) is in

either A1 or A2.

Somewhat surprisingly, with different partitions considered for
separate forms of ISP’s revenue as in (6), we obtain a simple form
of ISP’s price selection as in (7), which helps a lot in our closed-
form analysis in Stage I. Corollary 3.1 enables us to study ISP’s
price selection under only two cases.

Two regimes: core-preferred and edge-dominant. We henceforth
refer to the regime where (p?c , p

?
e) is in A1 as R1: core-preferred

regime, and the regime where (p?c , p
?
e) is in A2 as R2: edge-

dominant regime. In R1, core service is preferred by SUs whose
willingness to pay is relatively high and SUs with lower will-
ingness to pay subscribe to edge service, whereas in R2, edge
service dominates core service such that no SU subscribes to core
service.

3.2 Interaction between ISP and EROs in Stage I: Incen-
tivizing and Sharing Resource
In this subsection, we analyze the sequential subgame between
the ISP and EROs in Stage I. We now aim at understanding how
the decision of ISP’s incentive to EROs affects the behavior of
EROs. Following the backward induction, we first explain how
each ERO determines whether it shares the resource or not with a
given incentive q in Stage I-B, where the incentive q is determined
by ISP in Stage I-A.

3.2.1 (Stage I-B) ERO’s Selection of Strategy
In this substage, we look into ERO’s selection of strategy to share
the resource. For a given incentive q by ISP, the strategy of an
ERO with willingness to share θ is given as follows:

y?(θ) =

s, if θ <
q

q0
,

n, otherwise,
(8)

where, as mentioned earlier, the threshold on willingness to share
θ0 is θ0 = q

q0
. When willingness to share of an ERO is assumed

to be uniformly random in [0, 1], the number of EROs who share
their resources is bNq

q0
. Using (1), the shared edge resources’ QoS

becomes:

αe = αe(q) := f

(
bNq

q0

)
, (9)

where we often use αe(q) to explicitly express its dependence
on q. Recall f ′(m) > 0, f ′′(m) < 0 for all m as described in
(1). Furthermore, bNqq0 is a linear function of q, α′e(q) > 0 and
α′′e (q) < 0 for all q ∈ [0, q0].

3.2.2 (Stage I-A) ISP’s Selection of Incentive
In Stage I-A, ISP leases edge resources from EROs by giving a
suitable amount of incentive. In backward induction, as the leader
of game, the ISP predicts EROs’ equilibrium behaviors depending
on its incentive decision. Our central interest is that in conjunction
with the results in Stage I-B, how much incentive ISP should give
to EROs and what is the revenue of ISP at the equilibrium of
the entire game. The ISP’s revenue function has different shape,



7

depending on in which region the decision of ISP’s prices (pc, pe)
resides. Thus, we first investigate how ISP’s decision of incentive
affects the decision of prices and SUs’ behavior in Stage II.

From Corollary 3.1, we have mentioned that depending on
ISP’s choice of service prices, there are two regimes; R1: core-
preferred regime, and R2: edge-dominant regime. In Proposi-
tion 3.2, p?e is determined by the QoS of edge service which
is in turn controlled by the incentive q. Thus, the regime of ISP’s
strategy is determined by following the condition of q:

C0 : q < α−1e (αc − p0),

where f is the quality of edge service from (1). This means that
when C0 holds, the decision of ISP’s prices falls in A1 and it is in
the regime R1 where there exist three types of SUs subscribing to
one of core, edge, or no-subscription. Otherwise, it falls in A2,
thus being in the regime R2 where no SUs subscribe to the core
service.

The revenue of ISP in (3) is the function of the prices pc and
pe, and the incentive q. From Proposition 3.2 in Stage II, ISP
determines the prices (p?c , p

?
c) for given q where p?e is the function

of q. Let π?(q) denote the revenue of ISP when the ISP selects
the prices which maximize the revenue. Then, we can rewrite the
revenue function as follows.

π?(q) =

{
π?1(q) if C0 holds,
π?2(q) otherwise,

(10)

where we abuse the notation π?i (q) as πi(p?c , p
?
e) in (6) to stress its

dependence on given q. In order to maximize the revenue, ISP sets
the incentive q? which maximizes (10), and the result is presented
in following subsection.

3.3 Equilibrium of ISP-platformed Two-stage Dynamic
Game
We now present the equilibrium strategies of ISP, SUs and EROs,
by using the analysis in Stage I and II in Sections 3.2 and 3.1.

(a) ISP’s service prices to SUs and incentive to EROs. Theo-
rem 3.1 presents ISP’s equilibrium strategies of service prices to
SUs and incentive to EROs.

Theorem 3.1 (ISP’s service prices and incentive). ISP’s service
prices to SUs and incentive to EROs at the equilibrium are given
by:

p?c =
p0 + αc

2
, p?e =

αe(q
?)

2
,

q? = arg max{q̃1,q̃2}π
?(q),

such that q̃1 := min(q?1 , q0) and q̃2 := min(q?2 , q0) where q?1 is
the unique solution of following equation:

8bq(αc − αe(q))2 = p20q0α
′
e(q), (11)

and q?2 is the unique solution of following equation:

8bq = q0α
′
e(q). (12)

Theorem 3.1 characterizes the equilibrium of ISP’s strategies
in our two-stage embedded dynamic game. It reveals how much
the selection of incentive sequentially affects the pricing strategies
at the equilibrium. To understand the impact of the ISP’s decision
of incentive in Theorem 3.1 more clearly, we will provide the
numerical results which show the revenue of ISP for varying
incentive and the equilibrium behaviors of all players in Section 4.

(b) SUs’ service subscription and EROs’ resource sharing. We
now aim at understanding the equilibrium behavior of SUs and
EROs in Proposition 3.3. Note that SUs and EROs are differen-
tiated by their willingness-to-pay γ and willingness-to-share θ,
their equilibrium strategies are represented by their choices of
subscription and resource sharing, depending on the values of γ
and θ.

Proposition 3.3 (Equilibrium behaviors of SUs and EROs). With
the equilibrium prices and incentives p?c , p

?
e, and q? in Theo-

rem 3.1, for given willingness-to-pay γ and willingness-to-share
θ, SUs’ service subscription x?(γ) and EROs’ resource sharing
y?(θ) are given in what follows:

• SUs’ service subscription
(R1) Core-preferred regime (i.e., when C0 holds):

x?(γ) =


c, if γ >

p?c − p?e
αc − αe(q?)

,

e, if
1

2
< γ ≤ p?c − p?e

αc − αe(q?)
,

n, otherwise.

(R2) Edge-dominant regime (i.e., when C0 does not hold):

x?(γ) =

e, if γ >
1

2
,

n, otherwise.

• EROs’ resource sharing

y?(θ) =

s, if θ <
q?

q0
,

n, otherwise,

Let z? =
p?c−p

?
e

αc−αe(q?) . Proposition 3.3 shows the equilibrium
of SUs and EROs’ strategies. In regime R1, SUs with γ ∈ [ 12 , z

?]
prefer to edge service, and SUs with γ ∈ [z?, 1] decide to
subscribe to core service. Whereas in regime R2, SUs with
γ ∈ [ 12 , 1] subscribe to edge service. The comparison with core-
only case where there only exists core service, shows the impact
of edge service. In core-only case, the price of core service
is the same as p?c as proved in the proof of Proposition 3.2.
Thus, SUs who subscribe to edge service in fog computing
market, get the better utility compared to core service in core-only
case. Since there always exist some SUs who subscribe to edge
service, providing edge service always improves the average
utilities of SUs. Moreover, in order to provide edge service, ISP
leases resource from EROs by giving incentive to EROs, and this
increases the utilities of EROs at the same time. Thus, when the
ISP uses edge service, all players get the benefit in fog computing
market.
Special case: When the quality of edge service follows (2).
To make our result in Theorem 3.1 more analytically visible, we
consider the specific model of the quality of edge service as (2)
which is simple but can model various factors as described in
Section 2.1. Under the above assumptions on the quality of edge
service, we have the following result on the equilibrium:

Proposition 3.4. Under the assumption that the quality of edge
service follows (2), ISP’s service prices to SUs and incentive to
EROs at the equilibrium are given by:

p?c =
p0 + αc

2
, p?e =

abβαcq
?

2(abq? + q0)
,

q? = arg max{q̃1,q̃2}π
?(q),
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such that q̃1 := min(q?1 , q0) and q̃2 := min(q?2 , q0) where q?1 is
the unique solution of following equation:

8qαc(ab(1− β)q + q0)2 = aβq20p
2
0,

and q?2 is the unique solution of following equation:

8q(abq + q0)2 = aβαcq
2
0 .

To interpret the result of Proposition, we consider a special,
yet practically plausible case when β = 1, b = 1, a = 1,
and αc = kp0 for some k > 0. The assumption of b = 1 and
a = 1 is mainly from our convenience, yet practically meaning
that the number of SUs are all potential EROs. From (2), a = 1
corresponds to the case when the increasing pattern of αe is mild
as the number of resource-sharing EROs increases, and β = 1
means that the maximum value of αe equals to αc, i.e., in the
best case when all EROs share their resources, there is not much
difference between the qualities of core and edge services. The
assumption of αc = kp0 implies that the basic cost of core service
is linear in its quality.

Under the above assumptions on the parameters, the quality
of edge service is αe(q) = kp0q

q+q0
. When p0

8k(k−1) < q0 holds
and q? meets condition C0, it is in core-preferred regime and the
equilibrium is as follows:

q? = min
(
p0

8k
, q0
)
,

π? = N ·min

(
p20

64k2q0
,
1

4k
− q0

)
+

Np0(k − 1)2

k
.

To see the impact of k for a fixed p0, when k is large, ISP tends
to decrease its incentive to EROs and provide SUs having smaller
willingness to pay with low quality edge service. However, for
small k (i.e., the quality of edge service becomes relatively
higher), ISP leases more resources from EROs by giving higher
incentive to maximize its revenue. In the proof, we show that the
revenue π?(q) is a unimodal function1 of q, which clearly presents
the tradeoff between the cost for leasing edge resource from EROs
and the income from SUs subscribing to edge service. ISP decides
its incentive for EROs so as to maximize the revenue and this
results in the equilibrium incentive.

3.4 Proofs

Proof of Proposition 3.1. Proposition 3.1 shows the utility-
maximizing strategy of an SU. We first consider the case where
αc ≥ αe. Let γc be the willingness to pay for an SU who takes
the core service. If SU with γc chooses the core service, it means
that the utility of SU is positive and it is higher than that with
edge service, as follows.

γcαc − pc ≥ 0 (13)

γcαc − pc ≥ γcαe − pe. (14)

By combining (13) and (14), and using the assumption αc ≥ αe,
the selection of the core service maximizes SU’s utility if and
only if its willingness to pay γ satisfies the following:

γ > max

(
pc − pe
αc − αe

,
pc
αc

)
.

1. A function f(x) is a unimodal function if for some value m, it is
monotonically increasing for x ≤ m and monotonically decreasing for
x ≥ m.

Similarly, if SU chooses the edge service, it means that when
it subscribes edge service, the utility of SU is positive and it is
higher than that with core service, as follows.

γeαe − pe ≥ 0

γeαe − pe ≥ γeαc − pc,

where γe is the willingness to pay for an SU who subscribes edge
service. This results in the condition of γ as following:

pe
αe

< γ ≤ pc − pe
αc − αe

.

Finally, the remaining SUs would not choose any services. A
similar analysis can be applied to the case when αc < αe. This
completes the proof.

Proof of Proposition 3.2. We first describe our proof strategy,
followed by detailed proof. We claim that the equilibrium point
is (p?c , p

?
e) = ( 1

2p0 + 1
2αc,

1
2αe) and show that π(p?c , p

?
e) ≥

π(pc, pe) for all (pc, pe) 6= (p?c , p
?
e). One technical challenge

is that ISP’s revenue π has a different shape depending on the
condition of (pc, pe) as shown in (6). Thus, we consider all
conditions and show that (p?c , p

?
e) is the equilibrium point.

We introduce the function π̄ defined for all (pc, pe) regardless
of the conditions.

π̄(pc, pe) =
∑
i

π̄i(pc, pe)1{(pc, pe) ∈ Ai}, (15)

where π̄i(pc, pe) := 1
N πi(pc, pe)+B. 1

N andB are constants for
simplicity. Since (15) has the same optimal solution as π(pc, pe),
we are interested in the solution of (15). Additionally, we define

(z1(t), z2(t)) := ((1− t)x+ tp?c , (1− t)y + tp?e) , (16)

where x and y are arbitrary non-negative real numbers and t
is a real number in [0, 1]. (z1(0), z2(0)) = (x, y) can rep-
resent all possible values of (pe, pc). Thus, we will show that
π̄(z1(t), z2(t)) is maximized when t = 0.

We now present a key lemma whose proof is in Appendix.

Lemma 3.1. For any given x, y, π̄(z1(t), z2(t)) is a non-
decreasing function of t ∈ [0, 1].

From Lemma 3.1, we can derive the following. For all (x, y) ∈
[0,∞)× [0,∞),

π(x, y) = Nπ̄(z1(0), z2(0))−B

≤ Nπ̄(z1(1), z2(1))−B = π(
1

2
p0 +

1

2
αc,

1

2
αe).

Since π̄(z1(t), z2(t)) is non-decreasing of t ∈ [0, 1], it is maxi-
mized when t = 1 and this results in that the optimal solution of
π̄ is (p?c , p

?
e) = (1

2p0 + 1
2αc,

1
2αe). This completes the proof.

Proof of Corollary 3.1. We get the ISP’s decision of prices in
Stage II from Proposition 3.2. By substituting (p?c , p

?
e) into the

conditions of regions A3 and A4 in (5), we can derive the con-
tradiction, as follows. We first consider the case where αc ≥ αe.
Suppose that (p?c , p

?
e) ∈ A3, then p?c <

αcp
?
e

αe
should hold. How-

ever, the right hand side is αc
2 > p?c , which is the contradiction.

Suppose that (p?c , p
?
e) ∈ A4. In this case p?e = αe

2 < α which
is the contradiction. A similar analysis can be applied to the case
when αc < αe, and this completes the proof.
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Proof of Theorem 3.1. By backward induction, we have shown
the equilibrium analysis of Stage II and that of Stage I-B, se-
quentially. Now, we provide the equilibrium of the ISP at the
Stage I-A. We first show that π? is a differentiable and strictly
concave function so we can narrow the candidates of q? as the
local maximum points of π?1(q) and π?2(q) individually. Finally,
we check the feasibility of all local maximum points and derive
the equilibrium incentive by comparing those candidate points.

Depending on the condition C0 of q, π? has a different shape
as presented (10). Let q̄ denote the boundary of q between R1 and
R2, then q̄ = α−1e (αc − p0). In each regime, substituting (7) into
(6), we obtain π?1(q) and π?2(q) as follows:

π?1(q) =
Np20

4(αc − αe(q))
− N(2p0 − αc)

4
− bNq2

q0
,

π?2(q) =
Nαe(q)

4
− bNq2

q0
.

(17)

We first show that π?(q) is continuous for q ∈ [0, q0]. Since
αe is continuous, it is trivial that π?2 . For q < q̄, αc − αe(q) > 0
holds, and thus π?1 is also continuous. For q̄, π?1(q̄) = π?2(q̄),
therefore π? is continuous for q ∈ [0, q0]. Similarly, since αe is
differentiable for q ∈ [0, q0], both π?1 and π?2 are differentiable.
At the boundary of two regimes, π?1

′(q̄) = π?2
′(q̄) holds so that

π? is also differntiable.
From the fact that αe(q) satisfies α′e(q) > 0 and α′′e (q) < 0,

we can easily induce that π?2(q) is strictly increasing and strictly
concave. Furthermore, π?1(q) is also stricaly increasing and strictly
concave when q < q. To summarize these facts, we can see that
π? is strictly increasing and strictly concave with the unique local
optimal point q?π which satisfies dπ?(q?π)

dq = 0. It is obvious that
q?π would be a local optimal point of π?1 or π?2 from the definition
of π?. Since the both π?1 and π?2 are strictly increasing and strictly
concave, each πi has its unqiue local optimal point denoted as
q?1 and q?2 , respectively. We can find the optimal q?1 and q?2 by
differentiating π?1(q) and π?2(q) with relation to q, respectively.
From (17) the derivatives of π?i (q) are:

dπ?1
dq

(q) =
Np20α

′
e(q)

4(αc − αe(q))2
− 2bNq

q0
,

dπ?2
dq

(q) =
Nα′e(q)

4
− 2bNq

q0
.

(18)

Thus, q?1 is the unique solution of following equation:

8bq(αc − αe(q))2 = p20q0α
′
e(q),

and q?2 is the unique solution of following equation:

8bq = q0α
′
e(q).

Now, we want to get the optimal point q? for π?(q) when q ∈
[0, q0]. We can easily show that q? > 0 since π?1(q), π?2(q), and
π?(q) are strictly increasing when q = 0 from (18). Therefore,
we can conclude that there are only two following candidates for
q?: min(q0, q

?
1) and min(q0, q

?
2). It is hard to get a clear closed

form of q? from the complexity of our model. However, since the
definition of q? is that the maximal point of π?(q) in [0, q0], we
can say that q? = arg maxq∈{min(q?1 ,q0),min(q?2 ,q0)}π

?(q).

Proof of Proposition 3.3. We get the equilibrium of ISP’s strate-
gies in Theorem 3.1. From Theorem 3.1 we can get the equilibrium
behaviors of SUs and EROs for given incentive and prices by ISP.

Thus, we can derive SUs’ service subscription strategy at equilib-
rium by substituting p?c , p

?
e, q

? and αe(q?) into Proposition 3.1,
and EROs’ strategy from (8).

The strategies of EROs and SUs depend on condition C0.
When C0 holds, as presented in the proof of Theorem 3.1,
αc ≥ αe holds, SUs strategy results in (i) in Proposition 3.1.
Otherwise, there are two cases whether αc ≥ αe holds or not.
When it holds, pc−peαc−αe ≥ 1 and thus no SUs use core service, and
SUs with higher γ than 1

2 use edge service. When αc ≥ αe does
not hold, p

?
c

αc
>

p?e−p
?
c

αe(q?)−αc and thus there is no SU who subscribes
to core service, and SUs with higher γ than 1

2 subscribe to edge
service. We can get EROs’ equilbrium strategy by substituting q?

into (8).

Proof of Proposition 3.4. The proof of the proposition follows
two steps. First, we will show that (2) satisfies the condition for
f in (1). Second, by using the result of Theorem 3.1, we present
the closed form expression of equilibrium behavior for given the
assumption of service quality.

From (2), the derivative of αe(m) is:

α
′

e(m) =
βαcaN

(am+N)2
.

Since it is positive so αe is strictly increasing function of m. We
can easily get the result that αe is strictly concave function by
showing twice differentiated function of αe is negative. Thus, the
result for Theorem 3.1 can be applied to the case with the quality
of service (2).

Let q?1 and q?2 denote the local maximum of π?1(q) and π?2(q),
respectively. We can find the optimal q?1 and q?2 by differentiating
π?1(q) and π?2(q) with relation to q, respectively. From Proposi-
tions 3.1 and 3.2, the explicit expressions of the derivatives of
π?i (q) are:

dπ?1
dq

(q) =
abβαcNq0p

2
0

4(αc(1− β)abq + αcq0)2
− 2bNq

q0
,

dπ?2
dq

(q) =
abβαcNq0

4(abq + q0)2
− 2bNq

q0
.

Thus, (11) and (12) in Theorem 3.1 can be replaced by following
two equations, respectively.

8bq(αc − αe(q))2 = p20q0α
′
e(q),

8bq = q0α
′
e(q).

This completes the proof.

4 NUMERICAL RESULTS

In this section, we provide a set of numerical results to draw
practical implications based on our analytical results. We show
the impacts of edge service on the equilibrium of fog computing
market, where the equilibrium is affected by the interactions
between the numerically quantifying economic metrics such as
edge/core costs, efficiency, and maximum QoS. To make our
numerical result more analytically interpretable, we use the model
of service quality with (2). For simplicity, we assume that the
number of SUs is equivalent to that of EROs so that N = 100.
Moreover, we choose a = 5 and β = 1 to model a network where
there are 50 number of sharing EROs and the edge service QoS is
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Fig. 7. ISP’s revenue, SU’s total utility, and market share of core and edge services for varying core cost (p0) and edge cost (q0)
where β = 1.

70% of the core service QoS. From AT&T’s monthly data plan of
IoT cellular service [39] and incentive policy of Karma [31], we
choose p0 = $25 and q0 = $25 where an ERO shares its resource
to 25 SUs. We assume that the QoS of core service αc is 60 for
which SU with γ = 1 is willing to pay $60.

4.1 Impact of edge service on ISP’s Revenue, SUs’ and
EROs’ Utilities, and Market Shares

In order to show the impact of adding edge service, we compare
the case where ISP provides both edge and core services from
when it provides just core service. We first study the case
where the maximum QoS of edge service equals to that of core
service (i.e., β = 1). This case corresponds to the applications
in which SUs have no preference for edge or core services
if edge resources are fully shared (e.g., network connectivity
application). We later show the results for other varying values
of β in Section 4.2.

Observation 1. edge service improves ISP’s revenue by 33%.
The plots in the first row of Fig. 7 show the revenue of ISP. In
fog-computing market, ISP provides SUs with core and edge
services simultaneously, but for comparison, we also draw the
ISP’s revenue when ISP provides only core service. In all plots
in the first row, ISP’s revenue is overwhelming in the cases where
the ISP provides only core service, and this verifies the result of

Theorem 3.1. In our environmental parameter setting, the revenue
of ISP increases by 33% compared with the case where ISP
provides only core service.

Observation 2. SUs’ utility is improved by 30% on average, and
EROs’ utility also increases. Additionally, although ISP tries
to maximize its own revenue by setting appropriate prices and
incentive, SUs’ average utility increases, as shown in plots in the
second row of Fig. 7. In our setting, an SU’s total utility increases
by 30% compared with the case where ISP only provides core
service. In addition to this, the average utilities of EROs also
increase by incentive given by ISP, so that we conclude that edge
service is always beneficial to all players in the fog computing
market.

Observation 3. edge service reduces the ISP’s usage of core
resource by 93%. The plots in the bottom of Fig. 7 include two-
fold information: (i) the market share between core and edge
services in fog-computing market, and (ii) that of core service
when there is no edge service (dotted line in the plots). The
number of SUs subscribing to core service in (i) is always smaller
than that in (ii). ISP uses only 7% of the core resource compared
to (ii). It is because SUs, whose willingness to pay is relatively
low, prefer subscribing to edge service with lower price despite
its lower QoS. Thus, providing edge service can reduce the cases
requiring core resources.
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Fig. 9. Impact of ISP’s decision regarding incentive on the revenue.

4.2 Impact of Other Environmental Parameters

In this section, we study the impact of other environmental
parameters such as core and edge costs, efficiency of edge
service, and the maximum quality of edge service on the revenue
of ISP, SU’s utility, and the strategy selection of each player at the
equilibrium. We also investigate the impact of ISP’s decision on
the incentive for EROs on the revenue of ISP.

Observation 4. How ISP’s equilibrium strategy depends on the
environmental parameters? In the fog-computing market, ISP’s
strategy decision is classified into two regimes, depending on
given environmental parameters. In Fig. 7, shaded area refers
to regime R1 and the unshaded area refers to regime R2. As
edge resource becomes more efficient (i.e., a, p0 increase or q0
decreases), ISP prefers providing the edge service, and it finally
becomes in the regime R2 and provides only edge service. For
example, in our parameter setting in Fig. 7(a), the threshold value
of the core cost (p0) is $24, and if the core cost exceeds the
threshold, all SUs subscribe to the edge service.

Observation 5. Efficient edge resource improves the revenue of
ISP. Figs. 7(b) and 7(c) show the results with varying q0 and a,
respectively. When ISP leases edge resources by giving a small
amount of incentive (i.e., small q0), ISP provides the edge service
more aggressively to earn higher revenue. In our parameter setting,
as q0 decreases from $25 to $10, the revenue increases by 15%.
When a is high, the QoS of edge service increases aggressively
relative to the number of sharing-EROs, which results in the
increase of SUs subscribing to edge service as shown at the
bottom plot of Fig. 7(c). As a grows from 5 to 10, the revenue
increases by 25%.

Observation 6. High QoS in edge services (i.e., when β is large)
leads to the increase of ISP’s revenue. Fig. 8 shows the impact
of maximum quality of edge service βαc. As β grows, ISP

leases more resources from EROs by giving higher incentive, and
provides SUs with high quality edge service to maximize the
revenue. In our parameter setting, when β = 1.75, ISP decides
the incentive as $8.75 (see Fig. 8(c)) where 35 out of 100 EROs
share their resources. This results in the QoS of edge service
overwhelming that of core service, and no SU subscribes to core
service, i.e., ISP’s strategy is in regime R2 (see Fig. 8(b)). As
shown in Fig 8(a), compared to the case when β = 1, ISP’s
revenue increases twice, and we conclude that high QoS in edge
service leads to the increase of ISP’s revenue.
Observation 7. ISP’s decision of incentive has a tradeoff between
income from SUs and cost for incentivizing EROs. As Fig. 9(a)
shows, we see how the incentive affects the revenue of ISP. This
tradeoff is between the cost for leasing edge resource from EROs
and the income from SUs subscribing to edge service. ISP selects
incentive which maximizes the revenue of ISP and this results in
the equilibrium incentive. In Fig. 9(a), as β increases, the incentive
at equilibrium also increases. Similarly, as core (resp. edge) cost
increases from $10 to $40, the ISP increases (resp. decreases)
the incentive, and the revenue is reduced by 35% (resp. 27%), as
shown in Figs 9(b) and 9(c).

5 CONCLUSION

It is expected that a huge number of edge devices will be deployed
by individuals in the near future. In this paper, we model/analyze
an emerging edge resource market, which we call fog computing
market, where ISP which provides a platform of fog computing,
behaves as a mediator to lease edge resources from EROs and
provide services to SUs. By modeling this market as an ISP-
platformed two-stage embedded dynamic game, we prove the exis-
tence of a fog computing feasibility region, where fog computing
market increases ISP’s revenue as well as utilities of EROs and
SUs.



12

APPENDIX

Proof of Lemma 3.1. In this proof, we will show that
π̄(z1(t), z2(t)) is the non-decreasing function of t ∈ [0, 1].
Since π̄ has a different shape depending on the condition of
(z1(t), z2(t)) we will show the continuity of π̄ and show the
non-decreasement of π̄i(z1(t), z2(t)) by using the continuity of
this function. From equation (15), we can get π̄(z1(t), z2(t)) as
follows.

π̄(z1(t), z2(t)) =
4∑
i=1

π̄i((z1(t), z2(t)) ·1{(z1(t), z2(t)) ∈ Ai}

From (6), π is continuous because all πis are continuous functions.
We need to check the boundary between the partitions. We first
consider the boundary between A1 and A2 when αc > αe. From
(5), at the boundary pc = pe + αc − αe holds. By substituting
pc into π1 and π2, we can easily show that π1 = π2 at the
boundary. In the same way, we can show that πis are continuous
at all boundaries of partition Ai for all i. The continuity of
π̄(z1(t), z2(t)) follows the continuity of π(pc, pe) and the fact
that z1(t) and z2(t) are also continuous over t.

Now, we show the non-decreasement of π̄(z1(t), z2(t)) by
the using continuity of the function. In order to show that
π̄(z1(t), z2(t)) is a non-decreasing function of t, it is enough
to show that π̄i(z1(t), z2(t)) is a non-decreasing function of t for
all i, because π̄ is continuous.

We rewrite π̄i(pc, pe) as the summation of quadratic expres-
sions for given environmental parameters αc, αe, and, p0. For
example, when αc > αe, π1(pc, pe) is written as follows.

π̄1(pc, pe) = (pc − p0)
(
1− pc − pe

αc − αe
)

+ pe
( pc − pe
αc − αe

− pe
αe

)
= − αc

(αc − αe)αe

(
pe −

αepc − 1
2αep0

αc

)2

− 1

αc

(
pc −

1

2
(p0 + αc)

)2

+
1

4
· 1

αc − αe
p20 −

1

2
p0 +

1

4
αc. (19)

From above, we can easily show that the prices p?c1 and p?e1 which
maximize π̄1(pc, pe) satisfy following.

p?c1 =
1

2
(p0 + αc), p?e1 =

αep
?
c − 1

2αep0

αc
=

1

2
αe. (20)

By substituting (20) to (19), we can get the maximum revenue of
ISP for partition A1, as follows.

π̄1(p?c1, p
?
e1) =

1

4(αc − αe)
p20 −

1

2
p0 +

1

4
αc.

To show the non-decreasement of π̄1((z1(t), z2(t)), we substitute
(16) to (19) and we get π̄1((z1(t), z2(t)), as follows.

π̄1(z1(t), z2(t)) =
−(1− t)2αc
(αc − αe)αe

(
pe −

αepc − 1
2αep0

αc

)2

− (1− t)2 1

αc

(
pc −

1

2
(p0 + αc)

)2

+
1

4
· 1

αc − αe
p20 −

1

2
p0 +

1

4
αc.

It is obvious π̄1((z1(t), z2(t)) is a non-decreasing function of
t ∈ [0, 1]. Similarly, we can show the non-decreasment of

π̄2((z1(t), z2(t)), π̄3((z1(t), z2(t)), and π̄1((z1(t), z2(t)) where
αc ≤ αe. For π̄4((z1(t), z2(t)), it is trivial because it is constant.
All π̄i((z1(t), z2(t)) are the non-decreasing function of t and π̄
is continuous, and thus π̄ is the non-decreasing function of t. This
completes the proof.

ACKNOWLEDGE

This work was support by Institute for Information & communi-
cations Technology Planning & Evaluation grant funded by Korea
government(MSIP) (No.2016-0-00160,Versatile Network System
Architecture for Multi-dimensional Diversity), Basic Science Re-
search Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Science and ICT(No.
2016R1A2A2A05921755), and BK21 Plus project of the National
Research Foundation of Korea Grant.

REFERENCES

[1] D. Kim, H. Lee, H. Song, N. Choi, and Y. Yi, “On the economics of
fog computing: Inter-play among infrastructure and service providers,
users, and edge resource owners,” in Proceedings of IEEE International
Conference on Communications (ICC), 2018.

[2] Gartner. Gartner says 6.4 billion connected things will be in
use in 2016, up 30 percent from 2015. [Online]. Available:
http://www.gartner.com/newsroom/id/3165317

[3] D. B. Hoang and L. Chen, “Mobile cloud for assistive healthcare
(MoCAsH),” in Proceedings of IEEE Asia-Pacific Services Computing
Conference (APSCC), 2010.

[4] G. Sun and J. Shen, “Facilitating social collaboration in mobile cloud-
based learning: a teamwork as a service (TaaS) approach,” IEEE Trans-
actions on Learning Technologies, vol. 7, no. 3, pp. 207–220, 2014.

[5] S. Andreev et al., “Understanding the iot connectivity landscape: a
contemporary m2m radio technology roadmap,” IEEE Communications
Magazine, vol. 53, no. 9, pp. 32–40, 2015.

[6] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, and C. W. Chen, “Enabling
adaptive high-frame-rate video streaming in mobile cloud gaming appli-
cations,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 25, no. 12, pp. 1988–2001, 2015.

[7] N. Choi, D. Kim, S. Lee, and Y. Yi, “A fog operating system for
user-oriented iot services: Challenges and research directions,” IEEE
Communications Magazine, vol. 55, no. 8, pp. 44–51, 2017.

[8] Wi-Fi Calling. [Online]. Available: https://www.att.com/shop/wireless/
features/wifi-calling.html

[9] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applica-
tions and issues,” in Proceedings of the 2015 workshop on mobile big
data. ACM, 2015, pp. 37–42.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, 2009.

[11] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal et al.,
“Mobile-edge computing introductory technical white paper,” White
Paper, Mobile-edge Computing (MEC) industry initiative, 2014.

[12] Open Fog Consortium. [Online]. Available: https://www.
openfogconsortium.org/

[13] X. Masip-Bruin, E. Marı́n-Tordera, G. Tashakor, A. Jukan, and G.-J. Ren,
“Foggy clouds and cloudy fogs: a real need for coordinated management
of fog-to-cloud computing systems,” IEEE Wireless Communications,
vol. 23, no. 5, pp. 120–128, 2016.

[14] J. Fu, Y. Liu, H.-C. Chao, B. Bhargava, and Z. Zhang, “Secure data
storage and searching for industrial iot by integrating fog computing and
cloud computing,” IEEE Transactions on Industrial Informatics, 2018.

[15] S. Shaik and S. Baskiyar, “Hierarchical and autonomous fog architec-
ture,” in Proceedings of International Conference on Parallel Processing
Companion. ACM, 2018.

[16] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proceedings of IEEE Hot Topics in Web Systems and
Technologies (HotWeb), 2015.

[17] D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: a multi-tenant plat-
form to dynamically install third party services on wireless gateways,”
in Proceedings of ACM workshop on Mobility in the evolving internet
architecture, 2014.



13

[18] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[19] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog:
Towards a comprehensive definition of fog computing,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 5, pp. 27–32, 2014.

[20] Open Guarden. [Online]. Available: https://www.opengarden.com/
[21] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Enabling crowd-sourced

mobile internet access,” in Proceedings of IEEE INFOCOM, 2014.
[22] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis, and

L. Tassiulas, “Bits and coins: Supporting collaborative consumption of
mobile internet,” in Proceedings of IEEE INFOCOM, 2015.

[23] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, “Efficient and fair collab-
orative mobile internet access,” IEEE/ACM Transactions on Networking,
vol. 25, no. 3, pp. 1386–1400, 2017.

[24] L. Gao, G. Iosifidis, J. Huang, and L. Tassiulas, “Hybrid data pricing
for network-assisted user-provided connectivity,” in Proceedings IEEE
INFOCOM, 2014.
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